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Abstract—Network anomalies are correlated to activities that
deviate from regular behavior patterns in a network, and they
are undetectable until their actions are defined as malicious.
Current work in network anomaly detection includes network-
based and host-based intrusion detection systems. However, most
of them suffer from high false detection rates due to the base
rate fallacy. To overcome such a drawback, this paper proposes
a superior behavior-based anomaly detection system (SuperB)
that defines legitimate network behaviors of authorized users in
order to identify unauthorized accesses. We define the network
behaviors of the authorized users by training the proposed deep
learning model with time-series data extracted from network
packets of each of the users. Then, the trained model is used to
classify all other behaviors (we define these as anomalies) from
the defined legitimate behaviors. As a result, SuperB effectively
detects all anomalies of network behaviors. Our simulation results
show that the proposed algorithm needs at least five end-to-
end conversations to achieve over 95% accuracy and over 93%
recall rate. Some simulations show 100% accuracy and recall
rate. Our simulations use live network data combined with the
CICIDS2017 data set. The performance has an average of less
than 1.1% false-positive rate with some simulations showing 0%.
The execution time to process each conversation is 85.20 ± 0.60
milliseconds (ms), and thus it takes about only 426 ms to process
five conversations to identify anomaly.

Index Terms—Anomaly Detection, Network Anomaly, Deep
Learning, Classification, Behavior identification

I. INTRODUCTION

Cyber attacks on computer networks are becoming a huge
problem as network connectivity and data increases [1], [2],
[3]. When an attacker gains access to a network, internal net-
work security mechanisms require some type of identification
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of activities to detect the attacker. Attackers have learned to
masquerade as legitimate users or avoid certain actions to
avoid detection [1]. However, the behavior of the attackers
differs to some degree from that of normal users. There are
established patterns of behavior within network data that are
unique to each network. Anomaly detection takes advantage
of these patterns to identify abnormal behaviors within a
network by creating a general baseline of normal behavior.
This anomaly detection approach can be greatly beneficial to
networks with a group of consistent users, such as a private
office or a research laboratory network.

Anomaly detection is a large focus of network-based in-
trusion detection systems (NIDS), which is a classification of
intrusion detection systems (IDS) [3], [4]. Many NIDS using
a supervised learning approach have high false-positive rates
due to the constantly changing behavior and the diversity
of networks [2]. Even, they require a challenging task of
obtaining attack-free network data which will be used to train
the supervised learning. Unsupervised and semi-supervised
approaches can be effective for anomaly detection as they can
contribute to reducing false-positive rates by the capability of
detecting unknown anomalies [5], [6]. Semi-supervised and
hybrid approaches comprise the majority of work in anomaly-
focused NIDS and show superiority to supervised learning
approaches [2], [7]. Host-based intrusion detection systems
(HIDS) are another classification of IDS that only focus on
particular host systems. They are similar to NIDS as they focus
on anomaly detection and can suffer from high false positives
without hybrid approaches [8].

Minimizing false positives is crucial as most anomaly
detection schemes have the Bayesian base rate fallacy, which
states that near-zero false positives are required for low false
detection rates [9]. The false-positive rate must be less than



the observed event detection rate which for anomalies on a
network is low compared to normal traffic. Even with 100%
recall and low false positives, the false-detection rate can
still be high. Despite there being much research in machine
learning techniques for anomaly detection, not much machine
learning is implemented in live networks due to solutions not
being industrially viable and requiring supplemental detectors
to handle false anomaly detections [1], [2], [9], [10]. Addition-
ally, there has not been much exploration for a parameter for
anomaly detection with machine learning solutions that corre-
sponds with decreasing false positives and false detections.

In this paper, we propose a superior behavior-based anomaly
detection system (SuperB), which defines authorized users’ le-
gitimate network behaviors so as to classify all other behaviors
against them. We treat the other behaviors as anomalies. To the
best of our knowledge, SuperB is the first anomaly detection
scheme that defines authorized users’ network behavior to
detect network anomalies for standard network traffic. Our
scheme can be applied to any network traffic with proper
formatting of the input network data.

For the effective demonstrations of SuperB, we perform
comprehensive simulations with two datasets: (a) network
conversation data from the CICIDS2017 dataset [11] and
(b) network conversation data collected from individuals in
our laboratory. All data is formatted with the open-source
Wireshark software, facilitating industry adoption of SuperB.
In our simulations, we achieved over 97% accuracy and a
false-positive rate of below 1.2%. These results are obtained
only using five to eight days of user data with one day left
out of learning and used for testing our model. These results
are from using a combination of both data sets listed above
and from using only our lab data. This is discussed further in
the Results section.

II. RELATED WORK

In statistical anomaly detection research, a study proposed a
Principal Component Analysis (PCA) based anomaly detection
scheme for high-dimensional network flow [12]. Later, the
robust statistics-based approach utilizes fitting and flagging
on the network data for an enhancement to the existing PCA
detection methods [13].

Classification-based schemes are prominent research trends
in anomaly detection. In the studies of utilizing Support Vector
Machine (SVM), several attempts have been made to improve
the classification performance by combining various schemes
with conventional SVM-based detection models. Authors in
[14] apply One-Click Neural Network (OC-NN) that utilizes
One-Click SVM (OC-SVM) as a loss function. Employing
Deep Belief Network (DBN) also shows meaningful result in
generic feature extraction for anomaly detection, as demon-
strated in [15]. According to [4], applying Weighted Chi-
Square (WCS) is another option for improving detection rates
through discretization process that reduces the dimensionality
of data. In [16], a restricted Boltzmann machine (RBM) is
proposed for network anomaly detection in a semi-supervised

learning approach that trains on normal traffic data only for a
more general definition of abnormal behavior.

Long Short-Term Memory (LSTM) architecture is another
prominent method for anomaly detection. The study in [17]
generates an LSTM-based language model to predict commu-
nications between IPs and analyze prediction error to detect
traffic outliers. According to [18], detection performance can
be improved through the combination of Convolutional Neural
Network (CNN), LSTM, and Deep Neural Network (DNN) for
complex feature extraction. As noted in [19], DNN-LSTM log
pattern detection model that automatically detects anomalies
through the analysis of deviated log data also can be used.
Authors in [8] employ Gated Recurrent Unit (GRU) and CNN
to provide a better detection rate than the traditional LSTM
method.

III. PROBLEM DEFINITION

Network behavior is defined as sequential bidirectional
flow-based data among various sources and destinations. Nor-
mal behavior within a network can be defined as the most
common behaviors exhibited over a period of time. Normal
behavior must be of non-malicious intent with regards to an
assumed purpose of a network. Abnormal behavior can be
regarded as a complement of normal behavior. A more refined
definition is any uncommon behavior of malicious intent that
diverges from an assumed purpose of a network. Normal and
abnormal behavior cover the complete set of behaviors that
can be exhibited within a network.

In traditional approaches without machine learning,
anomaly detection relies on normal network behavior that has
been defined by the complement of known abnormal behavior
or a broad definition of normal behavior. When a broad
definition of normal behavior is used, each network’s normal
behavior will not be fully defined due to network diversity, so
only the complement definition is examined. Consider a group
G of all behaviors in an arbitrary network. Let each Si ∈ G
be a different set of behaviors within the group of behaviors
G. Let Sn be all defined normal network behavior, Sm be all
unknown behavior, and G \ (Sn ∪ Sm) be all known abnormal
behavior. We have the following as the traditional definition
of normal behavior

G \ (Sn ∪ Sm) ≡ (Sn ∪ Sm)

and the following assumption that

|(Sm \ (Sn ∩ Sm)) \ ((G \ (Sn ∪ Sm)) ∩ Sm)| > 0

This assumption states that there exists some unknown abnor-
mal behavior within Sm. Assuming otherwise claims that a
network security system recognizes all possible vulnerabilities.
We see that (Sn∪Sm) 6≡ Sn meaning this definition of normal
network behavior includes some unknown abnormal behavior.

Creating a general baseline of normal network behavior
has not been adopted uniformly due to the diversity in how
networks are structured and function [2]. However, users are
a commonality among networks, and their behavior within a



TABLE I: Selected Features From Conversations

Col Name Description
0 InternalExternalAddA Internal/External Address A
1 AddA User Address A
2, 3 InternalExternalAddB Internal/External Address B
4, 6 InternalExternalPortB Internal/External/Reserved Port B
7 Packets Total Packets
8 AvgBytesPerPacket Average Bytes Per Packet
9 PacketsAtoB Packets From Address A to B
10 AvgBytesPerPacketAtoB Average Bytes Per Packet From Address A To B
11 PacketsBtoA Packets From Address B to A
12 AvgBytesPerPacketBtoA Average Bytes Per Packet From Address B To A
13 Durations Duration
14, 17 AddressesPreviously Address A and B Previously Listed
18 KbPerSecAtoB Kb Per Second From Address A To B
19 KbPerSecBtoA Kb Per Second From Address B To A
20, 98 AddB Top Seven Address B From Each User’s Training Data With Each Column Mapped To An Address

network can be classified through packet data analysis. Defin-
ing the normal behavior of individual users in a network can
serve the same purpose of defining normal network behavior.
Combining each user’s behavior in a binary classification of
’user’ or ’others’ creates a formalized definition of normal be-
havior that can be used to better classify known and unknown
abnormal behavior as anomalous.

IV. PROPOSED SCHEME

A. Structure of Data

The traffic data format is a subset of features found in the
conversation view of Wireshark. This can be seen in Table I.
The subset of features includes both nominal and cardinal data.
The nominal data is translated into vector labels with each
entry in the vector as a different named type of data. For
example, a binary vector of length two is denoted (1,0) for an
internal IP address for Address B, while a vector of (0,1) is
used for an external IP address. Address B port numbers are
divided into a length of three binary vector that separates out
well-known ports 0 to 1023, registered ports 1024 to 49151,
and private ports 49152 to 65535. Addresses previously visited
by each user are divided into a length four binary vector to
capture all possible combinations where either Address A or
Address B is visited previously. Address B is broken into a k-
length vector where k−1 is a quantity of top addresses visited
by users. The quantity of top addresses is 79 for the different
traffic data used for our research to serve as padding to reach
a total column count of 98 columns to match parameters
in our model. One entry in the vector for Address B is a
catchall case for any address not found within the top k − 1
addresses of Address B. These nominal data vectors comprise
the columns within the input data format for our model. The
subset of features exclude the distinct source IP addresses,
labeled as Address A in Wireshark and AddA in Table I,
but include a single true or false label to ensure the source
address is from a device on the network. Similarly, a single
true or false label is used for classifying Address A as an
internal or external IP address. Ports used by Address A are
also excluded. These modified and excluded features do not
contribute much insight into the behavior of each user. The
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cardinal data is z-score normalized with further outlier removal
to remove bias and provide cleaner data for the model. Each
of the cardinal data is a single column within the data format
and is clearly distinguishable in Table I.

B. Model

Our proposed model for SuperB is a deep learning network
comprised of a nine-layer residual neural network (ResNet)
with an added fully connected layer that feeds into two
bidirectional recurrent neural network (RNN) with an added
attention layer. The ResNet is for spatial pattern detection to
find relations between different columns in the network data
that is used in our model. The ResNet can detect behavior
patterns a human would not understand. The RNN is for
time-series pattern detection to find complex relations among



different time-series data that humans would not understand.
For instance, there might be a pattern between time-series
data separated by three time-series that the RNN can detect.
Following the RNN is another fully connected layer. In total,
there are 16 layers in our model. Figure 1 shows the general
architecture of the deep learning network. The first two layers
deal with data collection and transformation. The first layer is
the data input of the labeled data. In Figure 1, normal behavior
is labeled as P1 and can be any desired user endpoint in a net-
work that has consistent behavior patterns. The second layer is
the flow features layer, which is the process of feature selection
and formatting of the input data. The feature selection is the
subset of the features found within the conversation filtering
of Wireshark. The formatting translates any nominal features
into a binary output where selected nominal features are made
probabilistic and readable by the deep learning network. The
formatting of the data is discussed in more depth previously.

The next 10 layers consist of the ResNet and a fully
connected layer, which follows the standard convolutional
neural network (CNN) architecture for ResNets. Each layer
in the ResNet has 64 filters. The first layer of the ResNet
has filters of size four by four. The remaining eight layers
have filters of size three by three and comprise the main
section of the ResNet in pairs of layers with a skip connection
after each pair. When data is fed into the ResNet, random
samplings of the data are taken in some batch size b with
a time-series value t. So each load of data for the ResNet
has b ∗ t conversations. The conversations are each resized to
dimensions of the number of features. For our experiments, the
dimensions are 14 by 7 with the number of total features at 98.
The filters in the ResNet layers compress the data and discover
hidden patterns among each conversation. The following layer
is a fully connected layer where the data is flattened and
reshaped into dimensions of b by t by n where n is the number
of embedded layers that store spatial relationship data for each
t. These 10 layers perform spatial feature extraction on the data
to learn feature patterns of each conversation.

The next three layers are the RNN. In the first two layers
of the RNN, long short term memory (LSTM) cells are used
and are represented by A and A′. The LSTM cells establish
patterns from each grouping of t by looking at the sequential
data. The third layer is an attention layer that refines the RNN
output by using all previous information learned about the
inputs from the fully connected layer of the ResNet. The
attention layer connects to all of the hidden states for each
input. The attention layer creates weights on more relevant
input features so that more attention is given to them while
extracting patterns from the data. These three layers look for
patterns among the time-series of conversations from each
person.

The last layer in the architecture is another fully connected
layer that uses the spatial feature extraction from the ResNet
and the time-series extraction from the RNN to classify each
person’s data as either normal or abnormal. In Figure 1, this
classification is split into PNormal and Others, as PNormal is
the selected normal behavior used in our testing.

Algorithm 1: Training the Deep Learning Model
Result: Classification Accuracy of Testing Data
Function classify(data 1, data 2) is

data normal, data else = process(data 1, data 2);
# data normal label is [1,0], normal class
# data else label is [0,1], complement class
return data normal, data else;

end
while do training do

load(training data, testing data);
if results then

input = results + training data;
else

input = training data;
end
labeled input = training labels(input);
trained = train(labeled input);
tested = classify(training data, testing data);
tr Cost = trained.get tr Cost();
if tr Cost ∼ 0 then

do training = FALSE;
return trained, tested;

else
results = trained;
print trained, tested;

end
end

C. Training

Algorithm 1 shows the general layout of the training for
our model. Each step in the training outputs training and
testing accuracy. In Algorithm 1, the classify function is
detailed to show the output labels. The labels outputted by
the classification function are discussed in the next section.
The other functions used are self-explanatory. The algorithm
loads data and does training and testing on the loaded data.
The loaded data for training is either four or seven days of user
data, and the testing data is one day. This is later discussed in
the Results section. The train function has a tr Cost value,
which is the difference measure between the input labels
and the output labels from the deep learning model. The
tr Cost eventually converges to zero after an adequate number
of training steps. When the tr Cost is approximately zero,
training of the model is finished, and the final trained and
tested results are outputted. Otherwise, the trained and tested
results for that step are outputted, and the training data is fed
back into the model for the next training step. The results
include the training step number as well as the accuracy of
training and testing data.

The input data from each person is separated with at least
one day being test data denoted Pite and the remaining days
being training data denoted Pitr where i represents a person.
Here the test data is not used for learning. One person i is
labeled normal behavior. All others are either labeled abnormal



behavior or unlabeled abnormal behavior. There is a testing
set of people that is a complement to the learning set, which
consists of unlabeled abnormal behavior. This testing set of
people is not used for learning. The learning set must have at
least three people and at most |G \ (Sn ∪ Sm)| - 1 as to allow
for generalization of abnormal behavior and still have at least
one unlabeled test person.

To avoid overfitting, we implement early stopping while
training our model. This is how we ended up with using 10,000
steps for training SuperB. We initially train with 20,000 steps
capturing intervals of every 100 training steps. After many
tests we determined that 10,000 steps was sufficient.

D. Classifying Behavior

Our algorithm is tailored for recognizing a specific person’s
behavior as baseline normal while all other people’s behavior
is considered abnormal. As described in Figure 1 and Algo-
rithm 1, the output of our model classifies people’s behavior
as either normal, in our case a specific person, or abnormal,
in our case all other people. The output labeled as other
people differs slightly from its input counterpart. The input
counterpart is labeled abnormal behavior. However, in the
last classification part of our algorithm, it intentionally makes
the output class of all abnormal behavior, both labeled and
unlabeled, a complement class with the same label as the input
abnormal behavior. In semi-supervised learning, deep learning
networks can create a new default class as a catch all for
unknown output data. Using this complement class can better
isolates the normal behavior features from all of the unknown
abnormal behavior features, which helps classify unlabeled
traffic correctly. This concept allows for some tailoring of
known abnormal behavior detection while addressing unknown
abnormal behavior. However, this default class concept is a
two way street. A default class can be created to classify
unlabeled behavior as normal if it better fits the general pattern
of labeled normal behavior. This was discovered in some
of our initial experiments. It is recommended to use more
labeled abnormal behavior data than labeled normal behavior
data so the abnormal default class catches unlabeled abnormal
behavior.

Our current classification scheme can be applied to two
scenarios, a single user and a network of users. The single
user case follows how the classification scheme is written. For
the network of users case, each user within the network would
require a model trained on their normal behavior. Once all of
the models are trained, the models can be used in parallel to
check against new traffic in the network. If the behavior does
not align with any of the trained models, said behavior can be
labeled as abnormal and proper protocols can be taken.

V. SIMULATIONS

A. Gathering Data

The data used in testing our algorithm is from two sources.
The shortened labels for the data can be found in Table II.
The first source is the publicly available CICIDS2017 data set.
As stated in [11], the CICIDS2017 data set was developed

TABLE II: Labels and Sources of Collected Data

Label Source Machine
P1 CICIDS2017 Ubu 16.4 64b
P2 CICIDS2017 Ubu 14.4 32b
P3 CICIDS2017 Ubu 16.4 32b
P4 CICIDS2017 Ubu 14.4 64b
P5 CICIDS2017 Win 10 Pro 32b
P6 CICIDS2017 Win 10 64b
P7 CICIDS2017 Mac OS X
P8 OfficeB Win 10 Enterprise 64b
P9 OfficeB Win 10 Enterprise 64b
P10 OfficeB Win 10 Enterprise 64b
P11 OfficeB Win 10 Enterprise 64b
P12 OfficeA Win 10 Enterprise 64b
P13 OfficeA Win 10 Enterprise 64b
P14 OfficeA Win 10 Enterprise 64b
P15 OfficeA Win 10 Enterprise 64b
P16 OfficeA Win 10 Enterprise 64b

with realistic background traffic using the B-Profile system
designed in [20]. This data was captured using port mirroring,
so it is a complete capture. From CICIDS2017, data from
seven of the machines are used, including the Windows 10
Pro 32b, Windows 10 64b, Ubuntu 14.4 32b, Ubuntu 14.4 64b,
Ubuntu 16.4 32b, Ubuntu 16.4 64b, and MAC. These machines
are considered to be users for the sake of our experiments.
All five days of the CICIDS2017 data set are used for our
experiment with only four days used in the training set and the
remaining day used for testing. In some preliminary testing,
the Windows 7 Pro from CICIDS2017 showed very strange
behavior, so it has been left out of testing. In simulations using
the Windows 7 Pro as labeled normal or labeled abnormal
behavior, our model would not learn correctly. Additionally,
using the Windows 7 Pro for unlabeled abnormal behavior
gave varying results between high and low accuracy. More
analysis of the simulated user behaviors in the CICIDS2017
data set is required.

The second source is data collected from two network
groups within the Information and Intelligent Security (IIS)
Laboratory at Kennesaw State University. All computers used
in this data source are Windows machines running Windows
10 64B. These groups are named OfficeA and OfficeB based
on their respective room numbers at the college. The OfficeA
data group consists of five users and was collected between
September 17th, 2019, and September 30th, 2019. The OfficeB
data group consists of four users and was collected between
January 29th, 2020, and February 13th, 2020. The collection
period for all IIS network data was between 9 AM and 4 PM
for at least five hours per collection day. Both the OfficeA
and OfficeB data groups consist of eight days of collected
network data per user. The network data in the ISS data set
was collected using port mirroring to allow for a complete
capture. When using the IIS data set with the CICIDS2017
data set, only five out of the eight days are used with four
days used for training and the remaining day used for testing.

For both the CICIDS2017 and IIS data set, multiple days
of data are used to fully cover the behavior pattern of users
within a network. It is assumed that a user’s behavior will



TABLE III: Arrangements Of Data For Simulations

Arrangement Labeled Normal Labeled Abnormal Unlabeled Abnormal
A1 OfficeB (P8-P11) CICIDS2017 (P2, P5, P7) CICIDS2017 (1 from P3, P4, P6)
A2 OfficeB (P8-P11) CICIDS2017 (P1-P3) CICIDS2017 (1 from P4, P6, P7)
A3 CICIDS2017 (P1, P5-P7) OfficeB (P8-P10) OfficeB (P11)
A4 OfficeA (P12-P15) CICIDS2017 (P1-P3) CICIDS2017 (1 from P4, P6, P7)
A5 CICIDS2017 (P1, P2, P5, P7) OfficeA (P12-P14) OfficeA (1 from P15-P16)
A6a OfficeA (P12) OfficeA (3 from P13-P16) OfficeA (1 from P13-P16)
A6b OfficeA (P13) OfficeA (3 from P12, P14-P16) OfficeA (1 from P12, P14-P16)
A6c OfficeA (P14) OfficeA (3 from P12, P13, P15, P16) OfficeA (1 from P12, P13, P15, P16)
A6d OfficeA (P15) OfficeA (3 from P12-P14, P16) OfficeA (1 from P12-P14, P16)
A6e OfficeA (P16) OfficeA (3 from P12-P15) OfficeA (1 from P12-P15)

A7 OfficeA (P12) OfficeB (3 from P8-P11) OfficeB (1 from P8-P11)
& CICIDS2017 (P1, P5, P7) & CICIDS2017 (P2) & OfficeA (P15)

A8 OfficeA (P12) OfficeB (3 from P8-P11) OfficeB (1 from P8-P11)
& CICIDS2017 (P1, P3, P4) & CICIDS2017 (P2) & OfficeA (P15)

remain relatively the same when observed a day at a time.
However, some behavior activity occurs in cycles with days
between the activity. Some examples include paying a monthly
bill and online ordering of goods. Thus, at least a full business
week or five days of data collection is highly suggested for
our model.

For both the CICIDS2017 and IIS data sets, Wireshark is
used to read the PCAP data. For the IIS data set, Wireshark
is used to capture the PCAP data as well. Within Wireshark,
the conversation view for each PCAP is used to extract a CSV
file with metadata on the activity within the network during
the time frame of the capture. The CSV files are converted
into a machine learning readable format that focuses on the
behavior of each user. The features collected and their format
are previously discussed in Section IV under Structure of Data.

B. Environmental Settings

For our model, we test ten different arrangements using
combinations of the CICIDS2017 and the dataset collected
from our laboratory (named IIS data sets). In total there are
32 simulations tested using these arrangements. This is to
ensure that multiple scenarios are tested. The arrangements are
designated as A1 to A6 and are based around what sources
are used as labeled and unlabeled behavior. A6 has 5 sub-
arrangements.These can be found in Table III.

All arrangements except A6, A7, and A8 consist of four
model training sessions with each model trained on a different
normal behavior pattern and three abnormal behavior patterns.
Each model has unlabeled behavior tested against each training
step. Arrangement A6 only uses OfficeA and consists of
five sub-arrangements of four model training sessions with
each sub-arrangement training on the same normal behavior
but with different configurations of labeled and unlabeled
abnormal behavior. Each of these five sub-arrangements is
averaged to find the individual accuracy of all five users
within OfficeA. Arrangement A6 is done this way to better
illustrate the strength of our algorithm and model against live
network data. A7 and A8 have sub-arrangements based around
using different groups of users from OfficeB for training and
testing. This is discussed more in the Results section. For
testing labeled and unlabeled behavior from arrangements A1

TABLE IV: Average Test Performance for A1-
A5 with 10K Training Steps

Test Data TPR FPR Acc Prec F1
A1-P8 1 0 1 1 1
A1-P9 1 0 1 1 1

A1-P10 1 0 1 1 1
A1-P11 1 0.008 0.996 0.992 0.996
A2-P8 1 0 1 1 1
A2-P9 1 0 1 1 1

A2-P10 1 0 1 1 1
A2-P11 1 0 1 1 1
A3-P1 1 0 1 1 1
A3-P5 0.996 0 0.998 1 0.998
A3-P6 1 0 1 1 1
A3-P7 0.990 0.004 0.993 0.996 0.993

A4-P12 1 0.002 0.999 0.998 0.999
A4-P13 1 0.002 0.999 0.998 0.999
A4-P14 1 0.002 0.999 0.998 0.999
A4-P15 1 0 1 1 1
A5-P1 1 0 1 1 1
A5-P2 1 0 1 1 1
A5-P5 1 0 1 1 1
A5-P7 1 0 1 1 1

Test Data = Arrangement-Labeled Normal, TPR =
True Positve Rate, FPR = false-positive Rate, Acc =
Accuracy, Prec = Precision, F1 = F-Measure.

to A5, data from Tuesday is used from CICIDS2017, and
data from the fifth collection day is used from OfficeB and
OfficeA. These days are arbitrarily selected; however, Monday
for CICIDS2017 should be only be used for labeled behavior
due to it containing all benign behavior. For arrangement A6,
the sixth day was used for testing.

In A1, OfficeB is normal behavior, and CICIDS2017 is
abnormal behavior. A1 has labeled abnormal behavior that
consists of Windows, Ubuntu, and Mac users with unlabeled
abnormal behavior consisting of Linux and Windows users. In
A2, OfficeB is normal behavior, and CICIDS2017 is abnormal
behavior. A2 has labeled abnormal behavior as only Ubuntu
users and unlabeled abnormal behavior as Windows, Ubuntu,
and Mac users. This difference between A1 and A2 is due
to some preliminary testing that showed behavior patterns
were similar among users with shared operating systems in
the CICIDS2017 data set. More analysis of the CICIDS2017
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Fig. 2: Experimental Results based on CICIDS2017 and IIS datasets from using batch sizes of 500. These results come from the
testing set of data for each user. True positives are for correct labeling of abnormal behavior. false positives are for mislabeled
normal behavior as abnormal.



TABLE V: Average Test Performance for A6
with 10K Training Steps

Test Data TPR FPR Acc Prec F1
A6a 0.988 0.006 0.991 0.995 0.991
A6b 0.512 0.155 0.678 0.598 0.531
A6c 0.599 0.650 0.475 0.597 0.476
A6d 0.970 0.002 0.984 0.999 0.983
A6e 0.998 0.002 0.994 0.998 0.994

TPR = True Positve Rate, FPR = false-positive Rate,
Acc = Accuracy, Prec = Precision, F1 = F-Measure.

data set is required to formally define the number of unique
behavior patterns used, which is outside the scope of this
paper. Using only CICIDS2017 to test our model gives results
that could stem from some bias in how the traffic is created,
so a combination of CICIDS2017 and the IIS data is used
as there is a distinct difference between the two data sets.
The bias with CICIDS2017 stems from how our model can
both distinguish the different users but also can distinguish the
different operating systems. Our model’s ability to distinguish
the different operating systems may be related to the 25
simulated user behaviors found within the seven simulated
users we use from CICIDS2017. From the 25 simulated user
behaviors, it is not guaranteed that one behavior is not spread
out over multiple machines. Thus, A1 covers the scenario
when unlabeled abnormal behavior is possibly identical to
labeled abnormal behavior. In A3, CICIDS2017 is normal
behavior, and OfficeB is abnormal behavior. As each user in
OfficeB has unique behavior, an arbitrary order is selected.
The labeled normal behavior from CICIDS2017 has Windows,
Ubuntu, and Mac users represented. A4 and A5 are the same
as A2 and A3, respectively, except using OfficeA instead of
OfficeB. In A6, OfficeA is the only data set used. In A7 and
A8, we use a mix of all three data sets. Labeled normal
behavior is set to P12 (OfficeA) bot both A7 and A8. In
A7 labeled abnormal behavior is set to a Windows, Ubuntu,
and Mac machine from CICIDS2017 as well as a selection
of three users from OfficeB. In A8, the labeled abnormal
behavior is similar except that only Ubuntu machines are
used from CICIDS2017. In both A7 and A8, the unlabeled
abnormal behavior is one user from OfficeB who was left out
of the labeled behavior, P2 from CICIDS2017, and P15 from
OfficeA.

The deep learning models are trained with 10,000 steps to
ensure the convergence of the cost output from the network
and to ensure that all of the input data is selected by our
random batch selection for each iteration. We train all 24
different models at using a time-series t rate of 5. This time-
series amount is enough for distinguishing behavior patterns
and small enough for our models to be applicable in real-time
analysis of network traffic. We use a batch size b of 128 for
loading training data and an embedded size n of 40 in the
ResNet. The testing batch size is 500 for better accuracy.

TABLE VI: Average Test Performance for A7 & A8 with
10K Training Steps

Test Data TPR FPR Acc Prec F1
A7-P12- 0.997 0.002 0.9975 0.997998 0.997499(P8-P11)

A7-P12-P2 1 0.002 0.999 0.998004 0.999001
A7-P12-P15 0.93 0.002 0.964 0.997854 0.962733

A8-P12- 0.9935 0.011 0.99125 0.989049 0.99128(P8-P11)
A8-P12-P2 1 0.011 0.9945 0.98912 0.99453753
A8-P12-P15 0.922 0.011 0.9555 0.98821 0.953958

Test Data = Arrangement-Labeled Normal-Unlabeled Abnormal,
TPR = True Positve Rate, FPR = false-positive Rate, Acc =
Accuracy, Prec = Precision, F1 = F-Measure.

C. Results

Figure 2 represents the experimental resuts based on two
datasets: CICIDS2017 and IIS. Figure 2a, Figure 2c, and
Figure 2e depict changes of the true positive ratios (TPR) over
the 10,000 training iterations. All converge to a true positive
ratio of nearly one. The spikes generated training steps where
new data is learned as 10,000 isn’t guaranteed to cover all of
the network data. More training can give better convergence.
The changes in the false-positive ratios (FPR) over 10,000
training steps are seen in Figure 2b, Figure 2d, and Figure 2f.
The FPR also has some spikes due to the model learning new
data.

The test performance for each arrangement after 10,000
training steps can be found in Table IV, Table V, and Table VI.
Table IV has arrangements A1 to A5, Table V has the sub-
arrangements of A6, and Table VI has sub-arrangements of
A7 and A8. This separation is because there are separate
arrangement types with the main difference in the structure of
the labeled normal behavior and sources of data. As discussed
previously, the TPR converges very close to a ratio of one, and
the FPR converges very close to zero. These results maintain
an average accuracy above 97% and an execution time of
around 100 ms after training the model.

In Table VI, we did a combination of data different from
all other arrangements. This combination is done to further
show the strength of our model and to remove bias from our
testing. In our results found in Table VI, the average of four
simulations per sub-arrangement is used. In the selection of
both labeled and unlabeled behavior, we picked an arbitrary
grouping from the CICIDS2017 and IIS data sets. The column
Test Data represent a combination of arrangement-labeled
normal-unlabeled abnormal. We made two arrangements, A7
and A8, to show results when using a variety of machines
from the CICIDS2017 data set while still using a variety of
machines from our own collected data set. Some of the more
surprising results come from testing with P15. P15 is from
OfficeA, and OfficeA is not used in labeled abnormal behavior.
This shows that this truly unknown behavior, as in behavior
not from the same network, is labeled as abnormal behavior.
Thus, our model is very effective in using live network data.

These results suggest our algorithm is successful in using



behavior to classify unknown user traffic, both when looking
at individual users within a network and when comparing user
behavior from different networks. The algorithm maintains a
minimal FPR less than 1.2% on average, which gives credence
to the idea that the time-series pattern for each user is distinct
enough for classification. The low FPR means our model is
resistant to the base rate fallacy problem. Our algorithm is
applicable to real-time traffic analysis. The main constraint
is the time it takes for a user to create five conversations,
or sessions, worth of traffic. This lag is necessary to collect
enough data to establish a pattern of behavior. In some
previous testing of our model we found that using larger time-
series values increases our model’s performance because better
patterns of behavior can be identified with each user. However,
these time-series values stray more from a real-time solution.

During the experiments, we found some cases that our
algorithm does not work well. Figure 2c and Figure 2d, which
include A6-P14 (A6c) and A6-P15 (A6d), show these cases.
After exploring their data, the behavior of these two users
was found to be very similar to each other, which caused
learning issues when training our model using either user as
labeled normal behavior. Users P14 and P15 at the time were
working on the same project collaboratively. To fix these bad
results, more data is required to capture the users’ normal
unique behavior better. Also, having a general work schedule
associated with the data collection can help discover strange
portions of the data. When discussing our results below, we
ignore A6-P14 and A6-P15.

For the efficiency matter, we measured the execution time
of the algorithm. Each training step takes 85.20± 0.60 mil-
liseconds (ms) with a total training time of approximately 852
second for the 10,000 training steps. Our experiment showed
that we achieved high accuracy and low false positives of
unknown anomaly detection when using a small time-series
of t = 5, which execution time is approximately 420 ms.
The main technologies used for the testing are an Intel Core
i9-7920X CPU, GeForce RTX 2080 Ti GPU, and Tensorflow
version 1.12.

VI. CONCLUSIONS

In this paper, we proposed a solution for network anomaly
detection using a classification approach of individual user
behavior. This created a general solution that can be applied to
entire networks for anomaly detection network-wide. Our so-
lution is a semi-supervised deep learning approach that showed
a high accuracy rate of detecting unlabeled abnormal behavior.
To the best of our knowledge, this is the first approach
to detect network anomalies by defining legitimate users’
normal behaviors using network conversations. The proposed
architecture consists of a nine-layer ResNet coupled with a
bidirectional RNN that has an attention layer. The results from
our experiment showed that we achieved high accuracy and
low false positives of unknown anomaly detection when using
a small time-series of t = 5. The accuracy averaged above
97%, and the FPR remained on average less than 1.2%. The
TPR, which is equivalent to recall rate, shows that almost

no mislabeling occurred, even when only using live network
data. All of these results are from 10,000 training steps on 40
different simulations using our algorithm.
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